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 

Abstract—The simulation and construction of a direct current 

(DC) and alternating current (AC) resistor, based on a silicon 

wafer, has been described and demonstrated. By applying the van 

der Pauw method and the Thompson-Lampard theorem, to 

within approximations accommodating the conditions of the 

resistor’s construction, a constant resistance ratio, (π/ln2)2, was 

derived that is independent of the sample resistivity and thickness. 

The constant ratio, valued at approximately 20.5, can 

theoretically be used as a basis of comparison between two distinct 

calibration chains, one based on the traceability from a calculable 

capacitor and the other based on the quantum Hall effect. To 

support the calculated ratio, several sets of simulations were 

performed for both DC and AC cases. The DC simulation results 

agreed with the ratio value to within 0.035 % when using a wafer 

thickness of 0.53 mm. Additionally, the experimental DC and AC 

(1 kHz) results agreed with the calculated ratio value to within 

0.23 %, with at most a 0.06 % standard uncertainty before point 

contact errors from device fabrication.  

 
Index Terms— DC and AC resistance, silicon wafer, van der 

Pauw method, Thompson-Lampard theorem  

 

I. INTRODUCTION 

LTERNATING current (AC)  resistors play an important 

role in linking capacitances to DC resistances. Since the 

revision of the SI, the very concept of using a calculable 

capacitor (CC) as the basis for impedance has been under 

reassessment as efforts in pursuing graphene-based AC 

quantum Hall standards have been underway [1-3]. Though the 

linking of the two calibration chains is not necessarily required 

for fields like metrology, linking the two chains by using a 

naturally occurring ratio to compare quantities is a 

mathematical inquiry that warrants some investigation. 

In this work, a mathematical technique is presented to 

provide a proof of principle for comparing AC and DC resistors 

traceable to the CC and the QHE. This technique depends on 
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the Thompson-Lampard theorem, which stipulates that a 

geometry-independent capacitance ratio naturally emerges 

from preceding mathematical descriptions of a physical 

capacitor or resistor. The ratio is expressed as the constant 

value � �
�� ��

� ≅ 20.5423 . Furthermore, by combining 

measurements of resistance with this technique with those from 

the van der Pauw method [4], other physical quantities about 

the resistor may be neglected. 

Because this ratio is a mathematical constant, one need only 

generate the ratio of the resistances obtained from both 

methods. One should note that the conditions upon which the 

use of this constant is appropriate are limited due to the inherent 

constraints of the two theorems. Using both theorems is only 

truly valid for two identical copies of the material being 

measured, with one copy having four corner point contacts for 

van der Pauw measurements, and the other having four side 

contacts for Thompson-Lampard measurements. Furthermore, 

samples are required to be homogenous in all three spatial 

dimensions for the theorems to be applicable. Though the 

experimental device has all eight contacts to demonstrate 

convenient fabrication, the simulations and results suggest that 

some of the error in the obtained ratios arises from the 

breakdown of the two theorems when a single device has all the 

contacts, even when four of them are not being used in a 

particular measurement. 

II. NUMERICAL CONSIDERATIONS 

A. The van der Pauw Method  

One of the methods needed to derive this constant resistance 

ratio is the van der Pauw (vdP) method, which has been 

extensively used in a variety of modern experiments for thin 

materials as well as some error analysis [5-8]. For van der Pauw 

equations found in the literature pertaining to a sample with 

four infinitesimally small point contacts [9], one finds the 

material resistivity � = ��
�������� �

��
���, where t and � are the 

wafer thickness and specific sheet resistance, respectively. 

Here, ��  and ��  are two separate vdP measurements using 

different sets of contacts (for instance, by rotating a square 

sample with only four corner point contacts by 90°). In the case 

where the difference between �� and �� is less than 1 %, the 

correction function � ������ approaches unity to within 5 × 10-6 

and the resistivity is instead given by � ≈ ��
�������.  
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B. The Thompson-Lampard Theorem  

Applications of the Thompson-Lampard (TL) theorem 

include CC development [10-14]. For our case, we consider the 

side walls of a second, hypothetical device that is identical to 

the one supposed for vdP measurements. If C1 and C2 represent 

the mean capacitance per unit thickness between the two pairs 

of opposing sides, then by the Thompson-Lampard (TL) 

theorem [15, 16]: 

!
"�#$%& + !

"�#(%& = 1 

(1) 

Next, consider a medium of known electrical conductivity σ 

instead of the dielectric constant ε. Then one may establish the 

simple relation 
*
+ =

#
%, where G is the conductance (inverse of 

R). Applying this relation to the resistivity yields a result 

derived in the literature [17, 18]: 

 

!"�,*$� + !"�,*(� = 1 

� = - ∙ /02π234 =
/02
π �34- 

(2) 

 

RTL is typically the average of two sheet resistance 

measurements, R1 and R2. With the resistivity defined in both 

the vdP method and the TL theorem, one can equate the two to 

obtain an expression that is independent of resistivity and 

thickness, and the remaining terms yield a numerical ratio �5� 

(the square of the van der Pauw constant) as shown in equation 

(3) [19]: 

 

 

�5� = �34
�678 = �

9
ln 2�

�
≈ 20.54228 

(3) 

 

One of the more significant consequences of equation (3) is that 

�5� is not dependent on geometry or properties of the selected 

medium. To reiterate, the use of this ratio is only fully valid for 

experimental data when two identical devices are prepared such 

that one has four point contacts (vdP) and the other has the four 

side contacts (TL). The use of the actual device shown in Fig. 1 

may not yield this exact ratio despite its ease of fabrication. 

However, as will be explained in the next sections, such a 

device can provide a reasonable estimation of the ratio. 

 In addition to not being geometry-dependent, �5� can be used 

to determine either RTL or RvdP when the other is known or 

measured. It should be noted that the use of equations (1) and (2) 

for AC resistances is only approximate and, in this case, 

appropriate for a silicon wafer with silver contacts. It has been 

shown that the vdP method can be used for 

frequency-dependent quantities [20], as has the TL theorem 

[21]. Especially with the latter, care must be taken as the TL 

theorem has not been generalized for electrodynamics and thus 

may introduce an error if appropriate approximations are not 

made. Though measurements on silicon have been previously 

reported [22], the conditions of our system (i.e. having eight 

contacts on the same device) render the use of the TL theorem 

in its true form inappropriate. For this reason, simulations must 

be performed for the ideal case scenarios in addition to those 

performed for this hybridized device, shown in Fig. 1. 

 

 
 
Fig. 1. An illustration of the wireframe drawing of the square silicon wafer used 

for device fabrication is shown. There are eight electrical contacts made for two 

separate measurement methods. The four contacts labelled w, x, y, and z extend 

along the corners of the wafer (orange) and are used for van der Pauw 

measurements. A, B, C, and D represent four side contacts colored in alternating 

light blue and red for Thompson-Lampard measurements. The use of the two 

theorems for this device is only truly valid if we simulate two identical devices 

– one with four corner point contacts and the other with four large side contacts. 

III. DC SIMULATIONS 

The simulations to obtain an approximate �5�, reflecting the 

actual hybridized device, were carried out using ANSYS 

Maxwell electromagnetic software [see notes]. The same holds 

true for simulating the two ideal case scenarios – that is, two 

identical square wafers having the same specifications as our 

real device, with one of the two having four corner point 

contacts for vdP measurements and the other having four side 

wall contacts for TL measurements. An example model of the 

hybridized device and its corresponding mesh structure are 

shown in Fig. 2 (a). The device used for the simulation had 

dimensions 65 mm by 65 mm in lateral size and a 0.53 mm 

thickness. The relative permittivity was input as 2.23 and the 

resistivity was 580 Ω∙cm. The vdP contacts are shown in red 

and are insulated from the TL contacts that go across the sides 

of the device (in blue).  

Table I shows the simulation results for approximate forms of 

RTL, RvdP and the obtained �5� as a function of thickness. The 

results suggest that there is no significant difference in the error 

between the simulated and actual �5�  for thicknesses above 

approximately 0.1 mm. This higher error for small thicknesses 

may be a result of insufficient or inadequate meshing 

parameters. 
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Fig. 2. (a) The simulation model is shown above reflecting the hybridized 

square silicon wafer, as well as its corresponding meshes. The red corners are 

designated as the four vdP contacts, whereas the blue contacts on the side are 

designated for TL measurements, with a well-defined pocket of air insulating 

the two sets of contacts. (b) For comparison, a set of simulations was performed 

to fully understand the possible improvements in achieving the calculated ratio 

�5�. The vdP simulations involved having only four corner point contacts (with 

examples marked in red for current injection and green for voltage 

measurements). The TL simulations, not shown, were straightforward, as only 

the four side wall contacts were used. 

 

Table II, on the other hand, shows the simulation results for 

approximate forms of RTL, RvdP and the obtained �5�  as a 

function of thickness. These simulations were based on two 

modeled cases. In the first case (for TL), the silicon wafer was 

modeled having only four side wall contacts. In the second case, 

the wafer was modeled having only four corner point contacts 

(see Fig. 2 (b)). Though the results suggest that having two 

identical devices would yield a better ratio, the comparison of 

Tables I and II indicate that the hybridized device simulations 

do not provide an unreasonable estimate of the calculated ratio 

for thicknesses greater than 0.01 mm. More specifically, the 

relative deviations from the ratio are larger by slightly more 

than one order of magnitude. Though the TL simulations from 

Tables I and II appear to be identical, differences did emerge 

between the two sets of simulations, but were concealed by the 

significant digits reported. 

 
TABLE I 

DC SIMULATION RESULTS FOR A HYBRIDIZED SQUARE SILICON WAFER 

Thickness 
(mm) 

RTL (kΩ)  RvdP (kΩ) 
�5�  

 

Rel. Deviation 

from � �
�� ��

�
 

(%) 

0.001 26264.375 1678.37186 15.64872 23.8 

0.01 2628.7286 128.14555 20.51362 0.139 

0.1 262.87545 12.80122 20.53519 0.034 

0.5 52.57529 2.56007 20.53668 0.027 

0.53 49.59932 2.41535 20.53507 0.035 

1 26.2877 1.28012 20.53527 0.034 

5 5.25754 0.25601 20.53632 0.029 

 
TABLE II 

DC SIMULATION RESULTS FOR TWO IDENTICAL SQUARE SILICON WAFERS 

(IDEAL CASES) 

Thickness 
(mm) 

RTL (kΩ)  RvdP (kΩ) 
�5�  

 

Rel. Deviation 

from � �
�� ��

�
 

(%) 

0.001 26264.375 1118.82839 23.47489 14.27598 

0.01 2628.7286 127.96636 20.54234 0.000296 

0.1 262.87545 12.79655 20.54267 0.00192 

0.5 52.57529 2.55934 20.54252 0.00119 

0.53 49.59932 2.41446 20.54260 0.00157 

1 26.2877 1.27966 20.54267 0.00188 

5 5.25754 0.25593 20.54256 0.00137 

IV. RESISTANCE MEASUREMENTS 

A. Sample Selection, Electrical Contacts, and Assembly Unit 

The material used for the wafer was float zone silicon that 

was neutron transmutation doped (NTD), as provided by Topsil 

[see notes]. It had resistivity of about 580 Ω∙cm, 100 mm 

diameter, 0.53 mm thickness, lateral dimensions of 65 mm by 

65 mm, and a crystal orientation of (111). 

Ag paste and 99.9999 % purity Al were used as the electrical 

contact material. The Al contacts were thermally evaporated at 

450 °C until a thickness of 600 nm was obtained, at which point 

a 15 min anneal was performed in a molecular beam epitaxy 

loading chamber. The Ag paste contacts were made by coating 

the four sides of a silicon wafer using a soft brush. The 

assembled unit of the silicon wafer with TL and vdP contacts, 

coaxial cables, and Bayonet Neill–Concelman (BNC) 

connectors is shown in Fig. 3. Lead resistances were on the 

order of 6 mΩ.  
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Fig. 3. The assembled unit of a square silicon wafer with eight electrical 

contacts is shown in an Al case. The leads bonded to the corners of the wafers 

for RvdP measurements are connected to the black outer terminals of the box. 

The red outer terminals are connected to wires bonded to the wafer walls for 

RTL measurements.  

B. Measurements of RvdP and RTL 

Once the unit was assembled, both DC and AC RvdP 

measurements were performed, using the simplified circuit 

diagram shown in Fig. 4 (a). With the four metal electrodes w, 

x, y, and z, current was injected (IvdP) between w and z with a 

voltage (VvdP) being measured between x and y with a digital 

multimeter (DMM). A complementary measurement was also 

made by reconfiguring the leads such that current was injected 

(IvdP) between w and x and the voltage (VvdP) was measured 

between y and z. The measurements, along with their 

counterparts made by reversing the leads, were averaged to 

determine an approximate RvdP.  

For measurements (DC and 1 kHz) of an approximate RTL, 

refer to the example in Fig. 4 (b), which shows an example. 

There were four metal electrodes, labelled A, B, C, D, that were 

bonded to the walls of the wafer. A voltage was applied on one 

opposite pair of wafer contacts (B and D in Fig. 4 (b)), allowing 

the current to be measured (at D) using a DMM. In this 

configuration, sides A and C were held at zero potential. 

Determining an approximate RTL from these measurements 

(and again, their reversals) can be done by averaging the 

resistances from the two TL measurements. 

 

 
 

Fig. 4. The measurement circuits to determine approximate values of both RvdP 

and RTL, and by extension an approximate �5�, are illustrated here, with the 

silicon wafer depicted as a wireframe drawing. (a) In the RvdP measurements, a 

current is injected through two adjacent corners while the voltage is measured 

across the other two corners using a digital multimeter (DMM). Another 

combination of pairs is then measured to obtain an average value for RvdP. (b) A 

similar set of resistance measurements (RTL) is performed, with a key difference 

being that the two measured contacts are opposite one another and the two idle 

contacts are placed at the same (zero) potential, as shown by a blue wire 

shorting contacts A and C.  

V. MEASUREMENT RESULTS AND DISCUSSION 

The DC and 1 kHz measurement results for both RTL and RvdP 

(approximate form) are shown in Table III. The simulation 

results for �5� differences were on the order of 10-4 (in the case 

of the hybridized device) and experimental results suggested 

�5�  differences on the order of 10-3. These relatively higher 

errors are primarily attributed to the construction of the wafer 

samples since the procedure for preparing them did not 

implement more precise methods and practices. For instance, 

ensuring the equality of the lateral dimensions by metrological 

means may contribute a reduction in the error. Furthermore, the 

application of a more evenly-coated contact on the walls of the 

wafer would inhibit stray capacitances or inhomogeneous 

electric fields. Most importantly, the implementation of point 

contacts for vdP measurements would reduce the error, as seen 

by the high uncertainties approximated for this factor. For the 

scope of this manuscript, however, such processes were not 

required for proof of concept. Simulations were performed with 

thicknesses in the neighborhood of the commercially-obtained 

silicon wafer in order to verify the behavior of the differences in 

�5� , namely as a realistic representation of the thickness 

variation.  

The sources of uncertainty were analyzed and are 

summarized in Table IV. One of these sources includes the 

position of the contacts and the effects of their sizes, more 

relevantly in regard to vdP measurements [23]. By comparing 

the approximate size of the point contacts (in this case, 100 μm) 

with the length of the silicon wafer (6.5 cm), we can include an 
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uncertainty in the vdP measurement of the order of 0.1 %. 

Based on the manufacturer, thickness variations of this family 

of wafers have an upper bound of 10 μm. Since both resistance 

measurements would contain the same error, such errors would 

drop out. Another source comes from assuming that the 

resistivity is uniform throughout the wafer. One major source 

of uncertainty to consider is the measurement repeatability, and 

this is determined approximately by the measurement 

differences between �� and �� in the vdP configuration and R1 

and R2 in the TL configuration. Other uncertainties come from 

DC and AC voltage and current sources in the calibrator, the 

DC and AC current measurements of the DMM to measure RTL, 

and the DC and AC voltage measurements of the DMM to 

determine RvdP. Overall, before the addition of point contact 

errors, standard uncertainties summed to about 0.01 % for the 

DC case and 0.055 % for the AC case, both of which indicate a 

possible limitation to other systematic errors. The point contact 

sources of error contribute an order of magnitude more error 

and should be of heavy consideration when fabricating devices. 

Furthermore, these results suggest that the uncertainties are 

dependent on frequency. A future inquiry of interest would be 

to determine if constructing two nearly identical devices would 

yield better ratios, or if the methods of construction would 

hinder the attempts of improving the ratio. 

 
TABLE III 

MEASUREMENT RESULTS FOR A SQUARE SI WAFER 

 Measured value (A)  
Theory 

(B) 

=> −
@A/@ 
(%)  

Standard 

Uncertainty 
(Excluding 

Point Contact 
Errors) (%) 

 
RTL 

(kΩ)  

RvdP 

(kΩ) 
�5� �5�  

 

DC 54.2953 2.6492 20.4954 20.5423 -0.228 0.010 

1 

kHz 
48.3405 2.3505 20.5661 20.5423 0.116 0.055 

 

 
TABLE IV 

THE UNCERTAINTY FOR VDP AND TL RESISTANCE MEASUREMENTS 

Uncertainty factor 
Uncertainty (%) 

DC 1 kHz 

vdP Point Contacts 0.15 0.15 

Repeatability 0.01 0.05 

Assumption of Constant ρ <0.001 <0.001 

10 V Source for RTL 0.00025 0.01 

Current Measurements for RTL 

(< 2 mA) 
0.0005 0.015 

10 μA Source for RvdP 0.002 0.015 

Voltage Measurements for RvdP 

(< 200 mV) 
0.0001 0.005 

Combined Standard 

Uncertainty 
0.160 0.205 

Expanded Uncertainty (k=2) 0. 320 0. 41 

 

VI. CONCLUSION 

This work presents a mathematical approach to comparing 

AC and DC resistances by using a silicon wafer. We provide 

simulations for the experimental case where a hybridized 

device is used for both vdP and TL measurements as well as for 

the hypothetical case where two identical devices are 

constructed so that both the vdP and TL theorems are properly 

implemented. The simulation results for the hybridized device 

agreed with those of the hypothetical cases to within a tenth of a 

percent, indicating that a single wafer could provide a 

reasonable estimate of the natural ratio �5�. An experiment was 

also designed, which included the fabrication of a single silicon 

wafer with all eight contacts. The resulting standard 

uncertainties from all sources except for point contact errors 

(about 0.15 %) were found to be 0.01 % and 0.055 % for the DC 

and AC cases, respectively.  
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